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A B S T R A C T

In this paper we prove the rapid stabilization of an unstable heat equation subjected to an unknown
disturbance, which is assumed to be acting at the flux boundary condition. To that end, we design a multivalued
feedback law by employing the backstepping method, Lyapunov techniques and the sign multivalued operator,
which is used to handle the effects of the unknown disturbance. The well-posedness of the closed-loop system,
which is a differential inclusion, is shown with the maximal monotone operator theory.
1. Introduction

Partial differential equations have been widely and successfully
used to derive mathematical models for diverse phenomena, such as the
temperature on solids or fluids, the propagation of waves in a medium,
the lateral deflection of strings or beams, to name a few remarkable
examples. Once a mathematical model is established one relevant task
in control theory is to design feedback laws to stabilize the state of the
system to their equilibria or to another state of interest. In the literature
we can frequently find that mathematical models are analyzed under
ideal assumptions in which disturbances are neglected for the sake of
simplicity, but disturbances are always present and indeed may corre-
spond to an additional source of instability. Accordingly, it is relevant
to include disturbances in the study of the stabilization problem.

In this paper we address the problem of boundary stabilization of
an unstable heat equation subjected to an unknown disturbance acting
at the flux boundary condition. Let 𝐿 ∈ (0,∞) and 𝑎 ∈ 𝐶1([0, 𝐿]). Let
us consider the system described by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧𝑡 − 𝑧𝑥𝑥 = 𝑎𝑧, (𝑡, 𝑥) ∈ (0,∞) × (0, 𝐿),
𝑧𝑥(𝑡, 0) = 0, 𝑡 ∈ (0,∞),

𝑧𝑥(𝑡, 𝐿) = 𝑢(𝑡) + 𝑑(𝑡), 𝑡 ∈ (0,∞),
𝑧(0, 𝑥) = 𝑧0(𝑥), 𝑥 ∈ (0, 𝐿).

(1.1)

For a (regular enough) state 𝑧 = 𝑧(𝑡, 𝑥) of (1.1) we define its energy
by

𝐸(𝑡) = 1
2 ∫

𝐿

0
|𝑧|2 𝑑 𝑥, 𝑡 ∈ [0,∞). (1.2)
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The purpose of this paper is to exponentially stabilize the (regular
enough) state 𝑧 = 𝑧(𝑡, 𝑥) of (1.1) to the rest by means of a feedback law
𝑢(𝑡) that suppresses the effects of an unknown disturbance 𝑑(𝑡). Being
precise, we aim to prove the rapid stabilization of (1.1), which in this
paper is understood as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

For any desired decay rate 𝜔 ∈ (0,∞)
there exists a feedback law 𝑢(𝑡) and there exists a constant

𝐶 ∈ [1,∞)
such that 𝐸(𝑡) ≤ 𝐶 𝑒−2𝜔𝑡𝐸(0) for all 𝑡 ∈ [0,∞).

(1.3)

Regarding the undisturbed case, which is when the disturbance
is zero, the sources of instability of (1.1) come from its boundary
conditions and 𝑎+(𝑥) = max {𝑎(𝑥), 0} (the non-negative part of 𝑎). In
this case the problem under consideration, which is the obtention of
(1.3), has been successfully solved in [1] with a feedback law designed
by means of the backstepping method and Lyapunov techniques. Such
a feedback law is given by [1, (3.3)] and reads as

𝑢(𝑡) = −𝑘(𝐿, 𝐿)𝑧(𝑡, 𝐿) − ∫

𝐿

0
𝑘𝑥(𝐿, 𝑠)𝑧(𝑡, 𝑠) 𝑑 𝑠, (1.4)

where the gain kernel 𝑘 = 𝑘(𝑥, 𝑠) is a 𝐶2 function on the triangle
𝛺 = {(𝑥, 𝑠) ∈ R2 ∕ 0 ≤ 𝑠 ≤ 𝑥 ≤ 𝐿} uniquely solving [1, (3.1)], that
is to say,
⎧

⎪

⎨

⎪

⎩

𝑘𝑥𝑥(𝑥, 𝑠) − 𝑘𝑠𝑠(𝑥, 𝑠) = (𝑎(𝑠) + 𝜔)𝑘(𝑥, 𝑠), (𝑥, 𝑠) ∈ 𝛺 ,
𝑘𝑠(𝑥, 0) = 0, 𝑥 ∈ [0, 𝐿],

𝑘(𝑥, 𝑥) = 1
2 ∫

𝑥
0 (𝑎(𝑠) + 𝜔) 𝑑 𝑠, 𝑥 ∈ [0, 𝐿].

(1.5)
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Table 1
Stabilization of partial differential equations subjected to unknown disturbances;
meeting similar assumptions as (A1) and (A2) given below.

Equation Distributed disturbance Boundary disturbance

Heat [2] [3–5]
Wave [6] [7–9]
Beam [10] [11–13]
Schrödinger – [14,15]

Regarding the disturbed case, which is the case we address in this
paper, it is uncertain whether we can employ the same feedback law
(1.4) to solve the problem under consideration, which is the obtention
of (1.3), since in the construction of the gain kernel 𝑘 = 𝑘(𝑥, 𝑠) by
niquely solving (1.5) no assumption on the unknown disturbance is

used, and hence, the same feedback law (1.4) might not be able to
handle its effects. Indeed:

Claim 1.1. If the disturbance is not zero, then the feedback law (1.4) does
not longer work.

Proof. For the sake of the argument, in (1.1) let us consider 𝐿 = 𝜋∕2,
the constant parameter 𝑎(𝑥) = 1, the feedback law (1.4), the constant
isturbance 𝑑(𝑡) = − sin (𝐿) + 𝑘(𝐿, 𝐿) cos (𝐿) + ∫ 𝐿

0 𝑘𝑥(𝐿, 𝑠) cos (𝑠) 𝑑 𝑠 and
the initial condition 𝑧0(𝑥) = cos (𝑥). Then, the corresponding unique
solution to (1.1) is 𝑧(𝑡, 𝑥) = cos (𝑥). Since in this case we get that
𝐸(𝑡) = (1∕2) sin (𝐿) = 1∕2, it follows that (1.3) cannot be satisfied. ■

Accordingly, in (1.1) we may regard the unknown disturbance as
another source of instability and a new feedback law is required to solve
he problem under consideration. In this paper we propose a solution

to this open problem.
The stabilization problem for partial differential equations subjected

to unknown disturbances, acting either in the domain or at the bound-
ary, has been object of recent interest. In Table 1 we present, without
eing exhaustive, some of the concerned literature.

In the works presented in Table 1, the effects of the unknown dis-
urbances were handled with the aid of the sign multivalued operator.
n our case, we consider the sign multivalued operator sign ∶ R → 2R

2R denotes the power set of R) given by

sign(𝑓 ) =
⎧

⎪

⎨

⎪

⎩

𝑓
|𝑓 |

if 𝑓 ≠ 0,

[−1, 1] if 𝑓 = 0.
(1.6)

Regarding the disturbance, although it is assumed unknown, we ask
it to satisfy the following two assumptions, which are the standard ones
that can be found in the literature.
(A1) There exists 𝐷 ∈ (0,∞) such that |𝑑(𝑡)| ≤ 𝐷 for every 𝑡 ∈ [0,∞).
(A2) 𝑑 ∈ 𝑊 2,1(0,∞) and 𝑑(0) = 0.

On the one hand, assumption (A1) is required for the construction
f a feedback law able to reject the effects of the disturbance. In
ssumption (A1) the constant 𝐷 ∈ (0,∞) can be chosen as we see fit:
he greater its value is, the more disturbances the feedback law will be
ble to reject. On the other hand, assumption (A2) is required to prove

the well-posedness of the corresponding closed-loop system.
In order to present our main result, we need to introduce some

lements. First, let us consider the backstepping transformation 𝐾 ∶
𝐻2(0, 𝐿) → 𝐻2(0, 𝐿) given by

(𝐾 𝑧0)(𝑥) = 𝑧0(𝑥) + ∫

𝑥

0
𝑘(𝑥, 𝑠)𝑧0(𝑠) 𝑑 𝑠 = 𝑦0(𝑥),

where 𝑘 = 𝑘(𝑥, 𝑠) is the gain kernel obtained from (1.5). In virtue
of [1, Lemma 3.3] it follows that 𝐾 has a linear and bounded inverse
𝐾−1 ∶ 𝐻2(0, 𝐿) → 𝐻2(0, 𝐿). Also, let us consider the set

 = {𝑦0 ∈ 𝐻2(0, 𝐿) ∕ 𝑦′0(0) = 0 and 𝑦′0(𝐿) +𝐷sign(𝑦0(𝐿)) ∋ 0}.
2 
Let us note that  ⊂ 𝐻2(0, 𝐿) and that  is not an empty set since
𝐻2

0 (0, 𝐿) ⊂ . Indeed, for any 𝑦0 ∈ 𝐻2
0 (0, 𝐿) we get the true statement

[−𝐷 , 𝐷] ∋ 0.
Our main result is the following one.

Theorem 1.1. Let 𝑎 ∈ 𝐶1([0, 𝐿]). Let 𝜔 ∈ (0,∞) be the desired decay rate
and let 𝑘 = 𝑘(𝑥, 𝑠) be the gain kernel obtained from (1.5). Let us assume
(A1) and (A2). For a regular enough function 𝑓 = 𝑓 (𝑡, 𝑥) let us introduce
the multivalued feedback law
𝑢(𝑡, 𝑓 ) = −𝑘(𝐿, 𝐿)𝑓 (𝑡, 𝐿) − ∫

𝐿

0
𝑘𝑥(𝐿, 𝑠)𝑓 (𝑡, 𝑠) 𝑑 𝑠

−𝐷sign
(

𝑓 (𝑡, 𝐿) + ∫

𝐿

0
𝑘(𝐿, 𝑠)𝑓 (𝑡, 𝑠) 𝑑 𝑠

)

. (1.7)

Let 𝑧0 ∈ 𝐾−1() = {𝐾−1𝑦0 ∕ 𝑦0 ∈ } be an initial condition. Then, there
exists a unique 𝑧 = 𝑧(𝑡, 𝑥) in 𝑊 1,1(0,∞;𝐿2(0, 𝐿)) ∩𝐿1(0,∞;𝐻2(0, 𝐿)) such
that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧𝑡 − 𝑧𝑥𝑥 = 𝑎𝑧 for almost every (𝑡, 𝑥) ∈ (0,∞) × (0, 𝐿),
𝑧𝑥(𝑡, 0) = 0 for every 𝑡 ∈ [0,∞),
𝑧𝑥(𝑡, 𝐿) ∋ 𝑢(𝑡, 𝑧) + 𝑑(𝑡) for every 𝑡 ∈ [0,∞),
𝑧(0, 𝑥) = 𝑧0(𝑥) for every 𝑥 ∈ (0, 𝐿).

(1.8)

Moreover, there exists a constant 𝐶 ∈ [1,∞) such that
‖𝑧(𝑡, ⋅)‖𝐿2(0,𝐿) ≤ 𝐶 𝑒−𝜔𝑡‖𝑧0‖𝐿2(0,𝐿) for all 𝑡 ∈ [0,∞). (1.9)

Remark 1.1. Since (1.9) is valid for any desired decay rate 𝜔 ∈ (0,∞),
we have obtained the rapid stabilization (1.3) of the unstable heat
q. (1.1). Let us note that except by [15], the known results in the
tabilization of partial differential equations subjected to disturbances

at the boundary are not rapid, in the sense described in (1.3). This is an
improvement of our previous work [5], in which a heat equation with
variable coefficients and boundary disturbance is addressed.

Remark 1.2. The closed-loop system (1.8) is a differential inclusion.
Regarding differential inclusions and its well-posedness, the interested
reader may consult the papers [16–19] and the books [20–22].

Remark 1.3. The assumption 𝑧0 ∈ 𝐾−1() for the initial condition
s needed in order to have regular enough solutions to the closed-loop

system (1.8); assumption that is similar in nature to [1, (3.6)]. Such
an assumption is a technicality coming from the application of the
backstepping method.

In Theorem 1.1 the multivalued feedback law (1.7) is composed
by two parts. The first part, which actually is (1.4), is needed to
achieve the desired decay rate; while the second part uses the sign multi
valued operator (1.6) to handle the effects of the unknown disturbance.
Overall, the multivalued feedback law (1.7) is designed by employing
the backstepping method and Lyapunov techniques. The backstepping
method (see [23,24] for instance) has shown to be useful for solving
rapid stabilization problems, as can be consulted in [1,15,25–31] for
instance. The proof of the feedback design part described here is done
in Section 2. In Theorem 1.1 the corresponding closed-loop system is
the differential inclusion (1.8) and its well-posedness is shown with the

aximal monotone operator theory, which may be consulted in [20–
22] for instance. The proof of the well-posedness part described here is
done in Section 3.

In Section 4 we provide final comments and propose an open
problem.

Remark 1.4. As described above, the idea behind the feedback design
s to split the control into two parts, using each part for different

purposes. This idea is one of the main contributions of this paper,
besides the rapid stabilization result (Remark 1.1).
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Remark 1.5. The approach we present in this paper does not require
the introduction of a sliding surface nor of a sliding variable. In fact,
the control we design, given by (1.7), apparently is not a sliding mode
ontrol, but is similar in the sense that we also make use of the sign

multivalued operator (1.6). The sliding mode control procedure may
be consulted in [4,8,14,32–34] for instance.

2. Feedback design

In this section we employ the backstepping method, Lyapunov
techniques and the sign multivalued operator (1.6) to obtain the mul-
ivalued feedback law (1.7). The main idea behind the feedback design

proposed here is to split 𝑢(𝑡) as 𝑢(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡), where 𝑢1(𝑡) is used to
achieve the desired decay rate and 𝑢2(𝑡) is used to reject the effects of
the unknown disturbance.

Let us assume the hypotheses of Theorem 1.1. By [1, Lemma 3.2] we
have that (1.5) has a unique solution 𝑘 = 𝑘(𝑥, 𝑠), which is a 𝐶2 function
on the triangle 𝛺 = {(𝑥, 𝑠) ∈ R2 ∕ 0 ≤ 𝑠 ≤ 𝑥 ≤ 𝐿}. Then, let us consider
the backstepping transformation

𝑦(𝑡, 𝑥) = 𝑧(𝑡, 𝑥) + ∫

𝑥

0
𝑘(𝑥, 𝑠)𝑧(𝑡, 𝑠) 𝑑 𝑠 (2.1)

and let us take

𝑢1(𝑡) = −𝑘(𝐿, 𝐿)𝑧(𝑡, 𝐿) − ∫

𝐿

0
𝑘𝑥(𝐿, 𝑠)𝑧(𝑡, 𝑠) 𝑑 𝑠. (2.2)

Accordingly, thanks to the proof of [1, Theorem 3.1], which follows
the same arguments as in the proof of [1, Theorem 2.1], we have that
1.1) is transformed into
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑡 − 𝑦𝑥𝑥 + 𝜔𝑦 = 0, (𝑡, 𝑥) ∈ (0,∞) × (0, 𝐿),
𝑦𝑥(𝑡, 0) = 0, 𝑡 ∈ (0,∞),

𝑦𝑥(𝑡, 𝐿) = 𝑢2(𝑡) + 𝑑(𝑡), 𝑡 ∈ (0,∞),
𝑦(0, 𝑥) = 𝑦0(𝑥), 𝑥 ∈ (0, 𝐿),

(2.3)

where 𝑦0(𝑥) = 𝑧0(𝑥) + ∫ 𝑥
0 𝑘(𝑥, 𝑠)𝑧0(𝑠) 𝑑 𝑠. Let us assume that 𝑦 = 𝑦(𝑡, 𝑥)

is a regular enough solution of (2.3). We proceed to perform formal
computations, which later are justified in view of the analysis done in
the next section.

From (2.3) it follows that
1
2
𝑑
𝑑 𝑡

(

∫

𝐿

0
|𝑦|2𝑑 𝑥

)

+ ∫

𝐿

0
|𝑦𝑥|

2𝑑 𝑥 − 𝑦𝑥𝑦||
𝑥=𝐿
𝑥=0 + 𝜔∫

𝐿

0
|𝑦|2𝑑 𝑥 = 0,

1
2
𝑑
𝑑 𝑡

(

∫

𝐿

0
|𝑦|2𝑑 𝑥

)

+ 𝜔∫

𝐿

0
|𝑦|2𝑑 𝑥 ≤ (𝑢2(𝑡) + 𝑑(𝑡))𝑦(𝑡, 𝐿). (2.4)

Then, with the choice of

𝑢2(𝑡) = −𝐷sign(𝑦(𝑡, 𝐿)) (2.5)

the right-hand side of (2.4) becomes non-positive. Indeed, thanks to the
property 𝜃 𝑝 = |𝑝| for every 𝜃 ∈ sign(𝑝) and Assumption (A1) we have

(𝑢2(𝑡) + 𝑑(𝑡))𝑦(𝑡, 𝐿) ≤ −𝐷 𝜃 𝑦(𝑡, 𝐿) + |𝑑(𝑡)||𝑦(𝑡, 𝐿)|
= −𝐷|𝑦(𝑡, 𝐿)| +𝐷|𝑦(𝑡, 𝐿)| = 0 for every

𝜃 ∈ sign(𝑦(𝑡, 𝐿)). (2.6)

Therefore, in virtue of (2.4) and (2.6) we conclude that the solutions of
the corresponding closed-loop system, obtained by plugging (2.5) into
(2.3), satisfy

‖𝑦(𝑡, ⋅)‖2
𝐿2(0,𝐿)

≤ 𝑒−2𝜔𝑡‖𝑦0‖
2
𝐿2(0,𝐿)

for all 𝑡 ∈ [0,∞). (2.7)

Remark 2.1. We get the multivalued feedback law (1.7) by consider-
ing that 𝑢(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡), that 𝑢1(𝑡) is the one given by (2.2) and that
2(𝑡) is the one given by (2.5) with (2.1) evaluated at 𝑥 = 𝐿.
3 
In order to conclude (1.9) we use (2.7) and that both the back-
stepping transformation and its inverse are linear and bounded op-
erators. Indeed, by [1, Lemma 3.3] we have that the backstepping
transformation 𝐾 ∶ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿) given by

(𝐾 𝑓 )(𝑥) = 𝑓 (𝑥) + ∫

𝑥

0
𝑘(𝑥, 𝑠)𝑓 (𝑠) 𝑑 𝑠,

has a linear and bounded inverse 𝐾−1 ∶ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿). Let us set
𝐶1 = ‖𝐾−1

‖(𝐿2(0,𝐿)) and 𝐶2 = ‖𝐾‖(𝐿2(0,𝐿)), which satisfy 𝐶1𝐶2 ≥ 1.
Then, from (2.1) and (2.7) we get

‖𝑧(𝑡, ⋅)‖𝐿2(0,𝐿) ≤ 𝐶1‖𝑦(𝑡, ⋅)‖𝐿2(0,𝐿)

≤ 𝐶1𝑒
−𝜔𝑡

‖𝑦0‖𝐿2(0,𝐿)

≤ 𝐶1𝐶2𝑒
−𝜔𝑡

‖𝑧0‖𝐿2(0,𝐿) for all 𝑡 ∈ [0,∞).

We have shown the feedback design part of Theorem 1.1 and (1.9)
with 𝐶 = 𝐶1𝐶2.

Remark 2.2. As in [24, Section 2.6], we mention that the inverse
backstepping transformation is not used in the feedback design, but its
existence and properties are indeed used for the proof of the closed-loop
stability of (1.8).

3. Well-posedness

In this section we apply the maximal monotone operator theory to
prove the well-posedness of the closed-loop system (1.8), which is a
ifferential inclusion.

Let us recall that the backstepping transformation (2.1) maps (1.8)
with (1.7) into (2.3) with 𝑢2(𝑡) given by (2.5). The details are given in
the proof of [1, Theorem 3.1], which follows the same arguments as in
the proof of [1, Theorem 2.1]. Accordingly, we get
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑡 − 𝑦𝑥𝑥 + 𝜔𝑦 = 0, (𝑡, 𝑥) ∈ (0,∞) × (0, 𝐿),
𝑦𝑥(𝑡, 0) = 0, 𝑡 ∈ (0,∞),

𝑦𝑥(𝑡, 𝐿) +𝐷sign(𝑦(𝑡, 𝐿)) ∋ 𝑑(𝑡), 𝑡 ∈ (0,∞),
𝑦(0, 𝑥) = 𝑦0(𝑥), 𝑥 ∈ (0, 𝐿),

(3.1)

where 𝑦0(𝑥) = 𝑧0(𝑥) +∫ 𝑥
0 𝑘(𝑥, 𝑠)𝑧0(𝑠) 𝑑 𝑠. With the introduction of 𝑤(𝑡, 𝑥) =

(𝑡, 𝑥) − 𝑑(𝑡)𝜙(𝑥), where 𝜙(𝑥) = (1∕2𝐿)𝑥2 − (𝐿∕2), it follows from (3.1)
that 𝑤 = 𝑤(𝑡, 𝑥) satisfies
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤𝑡 −𝑤𝑥𝑥 + 𝜔𝑤 = 𝑓 , (𝑡, 𝑥) ∈ (0,∞) × (0, 𝐿),
𝑤𝑥(𝑡, 0) = 0, 𝑡 ∈ (0,∞),

𝑤𝑥(𝑡, 𝐿) +𝐷sign(𝑤(𝑡, 𝐿)) ∋ 0, 𝑡 ∈ (0,∞),
𝑤(0, 𝑥) = 𝑤0(𝑥), 𝑥 ∈ (0, 𝐿),

(3.2)

where 𝑓 (𝑡, 𝑥) = −𝑑′(𝑡)𝜙(𝑥) + 𝑑(𝑡)𝜙′′(𝑥) − 𝜔𝑑(𝑡)𝜙(𝑥) and 𝑤0(𝑥) = 𝑦0(𝑥),
he latter being in virtue of Assumption (A2). Let us note that we have
sed: 𝜙′(0) = 0, 𝜙′(𝐿) = 1 and 𝜙(𝐿) = 0.

In order to perform the analysis, let us introduce the operator
⎧

⎪

⎪

⎨

⎪

⎪

⎩

 ∶ 𝐷() ⊂ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿),
𝑝 = −𝑝′′ + 𝜔𝑝,
𝐷() = {𝑝 ∈ 𝐿2(0, 𝐿) ∕ 𝑝 ∈ 𝐿2(0, 𝐿), 𝑝′(0) = 0, 𝑝′(𝐿)

+𝐷sign(𝑝(𝐿)) ∋ 0}.
(3.3)

Due to the sign multivalued operator (1.6) it follows that 𝐷() is not a
linear subspace, and hence,  is not a linear operator. Thanks to (3.3)
we can write (3.2) in operator form as follows:
{𝑑 𝑤

𝑑 𝑡 +𝑤 = 𝑓 , 𝑡 ∈ [0,∞),
𝑤(0) = 𝑤0.

(3.4)

We proceed to prove that (3.4) is well-posed by applying the maxi-
al monotone operator theory, which may be consulted in [20–22] for

instance. In that direction we have the following two results: the first
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one (Proposition 3.1) states that the operator  is monotone, while the
econd one (Proposition 3.2) states that the operator 𝐼+ is surjective.

Proposition 3.1. The operator defined by (3.3) is monotone.

Proof. Let (𝑢, 𝑣) ∈ 𝐷() ×𝐷(). Then, we have

(𝑢 −𝑣, 𝑢 − 𝑣)𝐿2(0,𝐿)

= ∫

𝐿

0
(𝑢 −𝑣)(𝑢 − 𝑣) 𝑑 𝑥

= ∫

𝐿

0

[

−(𝑢 − 𝑣)′′ + 𝜔(𝑢 − 𝑣)
]

(𝑢 − 𝑣) 𝑑 𝑥

= ∫

𝐿

0
(𝑢′ − 𝑣′)2 𝑑 𝑥 + 𝜔∫

𝐿

0
(𝑢 − 𝑣)2 𝑑 𝑥 −

(

𝑢′(𝐿) − 𝑣′(𝐿)
)

(𝑢(𝐿) − 𝑣(𝐿)) .

(3.5)

Let us handle the last term of the right-hand side of (3.5). Since (𝑢, 𝑣) ∈
𝐷() × 𝐷(), there exist �̃� ∈ sign(𝑢(𝐿)) and 𝑣 ∈ sign(𝑣(𝐿)) such that
𝑢′(𝐿) +𝐷 ̃𝑢 = 0 and 𝑣′(𝐿) +𝐷 ̃𝑣 = 0, thus obtaining
(

𝑢′(𝐿) − 𝑣′(𝐿)
)

(𝑢(𝐿) − 𝑣(𝐿)) = −𝐷(�̃� − 𝑣) (𝑢(𝐿) − 𝑣(𝐿)) . (3.6)

Finally, due to the monotonicity of the sign multivalued operator (1.6),
we can combine (3.5) and (3.6) to conclude that (𝑢 −𝑣, 𝑢 − 𝑣)𝐿2(0,𝐿)
0. Accordingly, the operator  is monotone. ■

Proposition 3.2. The operator defined by (3.3) satisfies 𝑅(𝐼 + ) =
𝐿2(0, 𝐿).

Proof. Given a 𝑓 ∈ 𝐿2(0, 𝐿) we need to prove the existence of a
∈ 𝐷() such that 𝑝 + 𝑝 = 𝑓 for almost every 𝑥 ∈ (0, 𝐿), or

equivalently, 𝑝−𝑝′′+𝜔𝑝 = 𝑓 for almost every 𝑥 ∈ (0, 𝐿). To this end, we
proceed as in [35, Section 2] and analyze an optimization problem (see
lso the proof of [5, Proposition 3.1]). Let us introduce the functional

𝐽 ∶ 𝐻1(0, 𝐿) → R by

𝐽 (𝑝) = 1
2 ∫

𝐿

0

[

𝑝2 + (𝑝′)2 + 𝜔𝑝2 − 2𝑓 𝑝] 𝑑 𝑥 + 𝜑𝜆(𝑝(𝐿)), (3.7)

where 𝜑𝜆 ∶ R → R is the Moreau regularization of the convex and
ontinuous function 𝜑 ∶ R → R given by 𝜑(𝑥) = 𝐷|𝑥|. Thanks to [21,

Chapter IV, Proposition 1.8] (see also [22, Theorem 2.9]) we have

𝜑𝜆(𝑥) = 𝜆
2
|𝛼𝜆(𝑥)|

2 + 𝜑(𝐽𝜆(𝑥)), (𝜆, 𝑥) ∈ (0,∞) × R,

where 𝛼𝜆 = 𝜆−1(𝐼 − 𝐽𝜆) ∶ R → R is the Yosida approximation of the
maximal monotone operator 𝛼 ∶ R → 2R given by 𝛼(𝑥) = (𝜕 𝜑)(𝑥) =
𝐷sign(𝑥) and 𝐽𝜆 = (𝐼+𝜆𝛼)−1 ∶ R → R is the resolvent of 𝛼. Furthermore,
also from [21, Chapter IV, Proposition 1.8] (see also [22, Theorem 2.9])
we have that 𝜑𝜆 is a convex and differentiable function satisfying that
′
𝜆(𝑥) = 𝛼𝜆(𝑥).

The functional 𝐽 is convex and continuous, the latter being a conse-
uence of the continuous injection of 𝐻1(0, 𝐿) into 𝐶([0, 𝐿]). Moreover,

the functional 𝐽 is coercive. Indeed, considering the non-negativity of
𝜆 in (3.7) we get

𝐽 (𝑝) ≥ 1
2
‖𝑝‖2

𝐻1(0,𝐿)
− ‖𝑓‖𝐿2(0,𝐿)‖𝑝‖𝐻1(0,𝐿),

from which we deduce the claim since 𝐽 (𝑝) → ∞ as ‖𝑝‖𝐻1(0,𝐿) → ∞.
Therefore, [36, Theorem 2.19] yields the existence of a minimizer

∈ 𝐻1(0, 𝐿) for the functional 𝐽 . Then, in virtue of [36, Proposition
.20] and [36, Theorem 3.24], we have that the Gâteaux derivative

of the functional 𝐽 at such minimizer must vanish for each direction
𝑑 ∈ 𝐻1(0, 𝐿). Accordingly, as 𝜑′

𝜆(𝑥) = 𝛼𝜆(𝑥) we obtain

𝐽 ′(𝑚; 𝑑) = ∫

𝐿

0

(

𝑚𝑑 + 𝑚′𝑑′ + 𝜔𝑚𝑑 − 𝑓 𝑑) 𝑑 𝑥 + 𝛼𝜆(𝑚(𝐿))𝑑(𝐿) = 0

∀𝑑 ∈ 𝐻1(0, 𝐿). (3.8)
4 
In (3.8) we consider the facts 𝐶∞
0 (0, 𝐿) ⊂ 𝐻1(0, 𝐿) and 𝑚+𝜔𝑚−𝑓 ∈

𝐿2(0, 𝐿) to conclude that (𝑝′)′ = 𝑚+𝜔𝑚−𝑓 in the sense of distributions,
implying that 𝑝′ ∈ 𝐻1(0, 𝐿). Furthermore, after one integration by parts
in (3.8) we get

∫

𝐿

0
𝑑
(

𝑚 − 𝑚′′ + 𝜔𝑚 − 𝑓
)

𝑑 𝑥 = 0 ∀𝑑 ∈ 𝐶∞
0 (0, 𝐿),

which tells us that 𝑚 − 𝑚′′ + 𝜔𝑚 = 𝑓 for almost every 𝑥 ∈ (0, 𝐿). Using
his conclusion in the expression obtained after one integration by parts
n (3.8), we arrive at

−𝑚′(0)𝑑(0) + [

𝑚′(𝐿) + 𝛼𝜆(𝑚(𝐿))
]

𝑑(𝐿) = 0 ∀𝑑 ∈ 𝐻1(0, 𝐿).

Accordingly, so far we have shown:

Lemma 3.1. For any 𝜆 ∈ (0,∞) there exists 𝑝𝜆 ∈ 𝐻2(0, 𝐿) such
that 𝑝𝜆 − 𝑝′′𝜆 + 𝜔𝑝𝜆 = 𝑓 for almost every 𝑥 ∈ (0, 𝐿), 𝑝′𝜆(0) = 0 and
𝑝′𝜆(𝐿) + 𝛼𝜆(𝑝𝜆(𝐿)) = 0.

Let us consider the 𝑝𝜆 given by Lemma 3.1. We proceed to prove
that 𝑅(𝐼+) = 𝐿2(0, 𝐿) by analyzing what happens to 𝑝𝜆 as 𝜆 → 0+. To
this end, we shall obtain upper bounds for ‖𝑝𝜆‖𝐻2(0,𝐿) and |𝛼𝜆(𝑝𝜆(𝐿))|,
both independent of 𝜆 ∈ (0,∞).

• Upper bound for ‖𝑝𝜆‖𝐻2(0,𝐿) independent of 𝜆 ∈ (0,∞).
In virtue of Lemma 3.1 we have
( 1
2
+ 𝜔

)

∫

𝐿

0
|𝑝𝜆|

2 𝑑 𝑥 + ∫

𝐿

0
|𝑝′𝜆|

2 𝑑 𝑥 − 𝑝′𝜆(𝐿)𝑝𝜆(𝐿) ≤
1
2 ∫

𝐿

0
|𝑓 |2 𝑑 𝑥.

(3.9)

Since 0 ∈ 𝛼(0) we get 𝐽𝜆(0) = 0, and consequently, 𝛼𝜆(0) = 0.
Then, as 𝛼𝜆 is a (maximal) monotone operator we infer

−𝑝′𝜆(𝐿)𝑝𝜆(𝐿) = 𝛼𝜆(𝑝𝜆(𝐿))𝑝𝜆(𝐿) =
[

𝛼𝜆(𝑝𝜆(𝐿)) − 𝛼𝜆(0)
] (

𝑝𝜆(𝐿) − 0) ≥ 0,

which considered in (3.9) allows us to obtain

‖𝑝𝜆‖𝐻1(0,𝐿) ≤ ‖𝑓‖𝐿2(0,𝐿). (3.10)

Moreover, since 𝑝𝜆 − 𝑝′′𝜆 + 𝜔𝑝𝜆 = 𝑓 for almost every 𝑥 ∈ (0, 𝐿) we
actually have

‖𝑝′′𝜆 ‖𝐿2(0,𝐿) ≤ (2 + 𝜔)‖𝑓‖𝐿2(0,𝐿). (3.11)

• Upper bound for |𝛼𝜆(𝑝𝜆(𝐿))| independent of 𝜆 ∈ (0,∞).
The injection of 𝐻1(0, 𝐿) into 𝐶([0, 𝐿]) is continuous, and hence,
there exists a constant 𝐶𝐼 ∈ (0,∞) such that ‖𝑝‖𝐶([0,𝐿]) ≤
𝐶𝐼‖𝑝‖𝐻1(0,𝐿) for any 𝑝 ∈ 𝐻1(0, 𝐿). Then, by Lemma 3.1 we obtain

|𝛼𝜆(𝑝𝜆(𝐿))| = |𝑝′𝜆(𝐿)| ≤ ‖𝑝′𝜆‖𝐶([0,𝐿]) ≤ 𝐶𝐼‖𝑝
′
𝜆‖𝐻1(0,𝐿). (3.12)

Therefore, in view of (3.10), (3.11) and (3.12) we see that the
equences

(

𝑝𝜆
)

𝜆≥0 ⊂ 𝐻2(0, 𝐿) and
(

𝛼𝜆(𝑝𝜆(𝐿))
)

𝜆≥0 ⊂ R are bounded,
and hence, there exist (𝑝, 𝑔) ∈ 𝐻2(0, 𝐿) × R and subsequences, which
we denote by the same symbols, such that 𝑝𝜆 ⇀ 𝑝 in 𝐻2(0, 𝐿) (weak
convergence) and 𝛼𝜆(𝑝𝜆(𝐿)) → 𝑔 in R as 𝜆 → 0+. Moreover, we infer
that 𝑝𝜆 → 𝑝 in 𝐶1([0, 𝐿]) as 𝜆 → 0+ since the injection of 𝐻2(0, 𝐿) into
𝐶1([0, 𝐿]) is compact, implying that 𝑝′𝜆(𝑥) → 𝑝′(𝑥) in R as 𝜆 → 0+ for all
∈ [0, 𝐿].

Accordingly, Lemma 3.1 and the previous arguments yield:

Lemma 3.2. There exists 𝑝 ∈ 𝐻2(0, 𝐿) such that 𝑝 − 𝑝′′ + 𝜔𝑝 = 𝑓 for
almost every 𝑥 ∈ (0, 𝐿), 𝑝′(0) = 0 and 𝑝′(𝐿) + 𝑔 = 0.

In view of Lemma 3.2 and (3.3) we see that in order to complete the
proof of 𝑅(𝐼 +) = 𝐿2(0, 𝐿) we just need to prove that 𝑔 ∈ 𝛼(𝑝(𝐿)) =
𝐷sign(𝑝(𝐿)). The required arguments can be found at the end of the
proof of [5, Proposition 3.1], but we present it again here for the sake
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of completeness. We make use of several results that come from the fact
that 𝛼 is a maximal monotone operator. Let us recall that 𝑝𝜆(𝐿) → 𝑝(𝐿)
in R and 𝛼𝜆(𝑝𝜆(𝐿)) → 𝑔 in R as 𝜆 → 0+ (the subsequences). Then,
since the Yosida approximation of 𝛼 satisfies that 𝛼𝜆(𝑥) ∈ 𝛼

(

𝐽𝜆(𝑥)
)

or all 𝑥 ∈ R and 𝛼 is a closed operator, it suffices to prove that
𝜆(𝑝𝜆(𝐿)) → 𝑝(𝐿) in R as 𝜆 → 0+ to deduce that 𝑔 ∈ 𝛼(𝑝(𝐿)). Taking

into account that |𝐽𝜆(𝑥1) − 𝐽𝜆(𝑥2)| ≤ |𝑥1 − 𝑥2| for all (𝑥1, 𝑥2) ∈ R2 it
follows

|𝐽𝜆(𝑝𝜆(𝐿)) − 𝑝(𝐿)|

= |𝐽𝜆(𝑝𝜆(𝐿)) − 𝐽𝜆(𝑝(𝐿)) + 𝐽𝜆(𝑝(𝐿)) − 𝑝(𝐿)|

≤ |𝑝𝜆(𝐿) − 𝑝(𝐿)| + |𝐽𝜆(𝑝(𝐿)) − 𝑝(𝐿)|.

Finally, we deduce that 𝐽𝜆(𝑝𝜆(𝐿)) → 𝑝(𝐿) in R as 𝜆 → 0+ because the
resolvent of 𝛼 satisfies that 𝐽𝜆(𝑥) → 𝑥 in R as 𝜆 → 0+ for all 𝑥 ∈ R.

he proof of Proposition 3.2 is complete. ■We proceed to show the
well-posedness part of Theorem 1.1.

In view of Propositions 3.1, 3.2 and [21, Chapter IV, Lemma 1.3]
e see that the operator , defined by (3.3), is maximal monotone.

Let us recall that

𝑓 (𝑡, 𝑥) = −𝑑′(𝑡)𝜙(𝑥) + 𝑑(𝑡)𝜙′′(𝑥) − 𝜔𝑑(𝑡)𝜙(𝑥),

𝑤0(𝑥) = 𝑦0(𝑥),

𝑦0(𝑥) = 𝑧0(𝑥) + ∫

𝑥

0
𝑘(𝑥, 𝑠)𝑧0(𝑠) 𝑑 𝑠,

which by hypotheses satisfy 𝑓 ∈ 𝑊 1,1(0,∞;𝐿2(0, 𝐿)) and 𝑤0 ∈ 𝐷().
hen, regarding the well-posedness of (3.4), we have that [21, Chap-
er IV, Theorem 4.1] tells us the existence of a unique 𝑤 ∈ 𝑊 1,1

0,∞;𝐿2(0, 𝐿)) such that 𝑤′(𝑡) + 𝑤(𝑡) = 𝑓 (𝑡) for almost every 𝑡 > 0,
(𝑡) ∈ 𝐷() for every 𝑡 ≥ 0 and 𝑤(0) = 𝑤0. Accordingly, there exists a
nique 𝑤 = 𝑤(𝑡, 𝑥) in 𝑊 1,1(0,∞;𝐿2(0, 𝐿)) ∩ 𝐿1(0,∞;𝐻2(0, 𝐿)) such that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤𝑡 −𝑤𝑥𝑥 + 𝜔𝑤 = 𝑓 for almost every (𝑡, 𝑥) ∈ (0,∞) × (0, 𝐿),
𝑤𝑥(𝑡, 0) = 0 for every 𝑡 ∈ [0,∞),
𝑤𝑥(𝑡, 𝐿) +𝐷sign(𝑤(𝑡, 𝐿)) ∋ 0 for every 𝑡 ∈ [0,∞),
𝑤(0, 𝑥) = 𝑤0(𝑥) for every 𝑥 ∈ (0, 𝐿).

(3.13)

Then, as 𝑤(𝑡, 𝑥) = 𝑦(𝑡, 𝑥) − 𝑑(𝑡)𝜙(𝑥) and both the backstepping transfor-
mation and its inverse are linear and bounded operators, results given
by [1, Lemma 3.3], we obtain the existence of a unique 𝑧 = 𝑧(𝑡, 𝑥) in

1,1(0,∞;𝐿2(0, 𝐿)) ∩ 𝐿1(0,∞;𝐻2(0, 𝐿)) solving (1.8).
The proof of Theorem 1.1 is complete.

4. Concluding remarks

In this paper we have shown the rapid stabilization (1.3) of the un-
table heat Eq. (1.1), in which there is an unknown disturbance acting
t the flux boundary condition. We have employed the backstepping
ethod, Lyapunov techniques and the sign multivalued operator (1.6)

or the design of the multivalued feedback law (1.7). The assumptions
made on the unknown disturbance, namely (A1) and (A2), are the
standard ones that can be found in the literature. The well-posedness
of the corresponding closed-loop system (1.8) has been shown with the
maximal monotone operator theory.

The main contribution of this paper, besides the rapid stabilization
esult (Remark 1.1), is the idea behind the feedback design: to split the

control into two parts (Remark 2.1), with one part for the employing
f the backstepping method, used to achieve the exponential decay
f the energy (1.2) for any desired decay rate, and the other part

for the handling of the unknown disturbance, in which it is used the
sign multivalued operator (1.6). We think that this approach could be
applied to address the rapid stabilization of other partial differential
equations subjected to disturbances.
5 
In this paper we have considered [1] as a basis. Accordingly, we
believe that a natural open problem would be to obtain the rapid
stabilization of the unstable wave equation considered in [26], but with
n unknown disturbance acting at the boundary condition.
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