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Abstract— In this paper we address the problem of rapid
stabilization of a reaction-diffusion equation with distributed
disturbance. With the aid of the spectral decomposition of
the spatial operator associated to the equation and the sign
multivalued operator, which is used to reject the effects of
the disturbance, we design a feedback law that exponentially
stabilizes, with decay rate as large as desired, the corresponding
infinite-dimensional system. The well-posedness of the resulting
closed-loop system, which actually is a differential inclusion, is
shown with the maximal monotone operator theory.

I. INTRODUCTION

Reaction-diffusion equations arise naturally in a variety of
models from biology, chemistry and physics as can be
seen in [27], [25], [2], [6] and the references therein. This
kind of model is suitable for many applications because it
allows to describe distributed parameter systems, and also,
dynamics depending on both the time and another variable of
interest, as the space. For such infinite-dimensional systems,
dedicated control techniques are available in the literature
to analyze the stability or to design stabilizing controllers.
Classical tools are Lyapunov control methods [9], [21] and
backstepping techniques [18], useful for both linear and
nonlinear partial differential equations (see also [8]).

The present work considers the case of an unstable
reaction-diffusion equation with disturbances. Both the
control and the disturbance operators are bounded, to model
a dynamical system with in-domain inputs (one control
and one disturbance). For this kind of perturbed distributed
parameter systems, some methods for stability analysis
and control have been developed, as the input-to-state
stability analysis [22] or the direct study of Sturm-Liouville
operators [17].

In this paper we address the problem of rapid stabilization
of a reaction-diffusion equation with distributed disturbance.
Roughly speaking, we solve a stabilization problem of an
infinite-dimensional system by ensuring a decay rate as large
as desired. Moreover, we also obtain that the stability of the
closed-loop system is robust with respect to some unknown
distributed disturbances.
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Let us introduce more precisely the control problem under
consideration in this paper. Let Ω⊂RN , with N in N, be an
open and bounded set of class C1. Its boundary is denoted
by ∂Ω. Let a in (0,∞) be the diffusion coefficient and c in
L∞(Ω) be the reaction term. Let us consider the reaction-
diffusion equation zt −a4z− cz = u+d, (t,x) ∈ (0,∞)×Ω,

z(t,x) = 0, (t,x) ∈ (0,∞)×∂Ω,
z(0,x) = z0(x), x ∈Ω.

(1)

The purpose of this paper is to design a controller so that
the closed-loop system is exponentially stable in L2(Ω),
with decay rate as large as desired. This is done by means
of a feedback law u = u(t,x) that rejects the effects of
a disturbance d = d(t,x). Although we assume that the
disturbance is unknown, later we make some assumptions
on its regularity and its L2(Ω) norm.

Let us note that (1) is an unstable partial differential
equation. Indeed, in the undisturbed case, which is when the
disturbance is zero, the term c+(x) = max{c(x),0}, which
corresponds to the non-negative part of the reaction term
c ∈ L∞(Ω), is the source of instability in (1). Then, in order
to exponentially stabilize (1) in L2(Ω), so that the decay rate
is at least ω ∈ (0,∞), we could take the feedback law

u(t,x) = (−c+(x)−ω)z(t,x). (2)

We could also take other feedback laws, such as those
constructed from a finite-dimensional truncated system as
in [14], [19], [20] and [26], for instance. Regarding the
disturbed case, it is uncertain whether we can employ the
same feedback laws we would use in the undisturbed case,
since in their construction no information of the disturbance
is used, and hence, such feedback laws might not be able
to handle the effects of the disturbance. This scenario has
been observed in [11, Page 193] for the wave equation
with distributed disturbance and in [15, Page 96] for the
Euler-Bernoulli equation with boundary disturbance, for
instance. Accordingly, in (1) we may regard the disturbance
as another source of instability.

In order to reject the effects of the disturbance we use the
sign multivalued operator defined in [3, Section 4.2.3]. Given
a Hilbert space H we define the sign multivalued operator
signH (·) : H → 2H (2S denotes the power set of S) by
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signH ( f ) =


f

‖ f‖H
if f 6= 0,

{g ∈H / ‖g‖H ≤ 1} if f = 0.
(3)

The sign multivalued operator has shown to be useful to
deal with the effects of a disturbance, acting either in the
domain or at the boundary, as can be seen in [12], [13],
[11], [15], [16] and [24], for instance. In all those works, (3)
has been used with H = R. Nevertheless, due to technical
reasons in this paper we use (3) with H = L2(Ω).

In order to present our main result we need to make the
following two assumptions on the disturbance.

(A1) d ∈ L1(0,∞;L2(Ω)).

(A2) There exists D ∈ [0,∞) such that ‖d(t, ·)‖L2(Ω) ≤ D
for t ∈ [0,∞).

Our main result is the following one.

Theorem 1: Let us assume (A1) and (A2). Let z0 in L2(Ω)
be the initial condition. Let ω in (0,∞) be the desired decay
rate. Then, there exists a feedback operator F : L2(Ω)→
L2(Ω) such that (1) with the feedback law

u(t,x) = F (z(t,x))−DsignL2(Ω)(z(t,x)) (4)

is exponentially stable in L2(Ω), with decay rate ω . Being
more explicit, (1) with the feedback law (4) has a unique
weak solution z in C([0,∞);L2(Ω)), and it satisfies

‖z(t, ·)‖L2(Ω) ≤ e−ωt‖z0‖L2(Ω), t ∈ [0,∞). (5)

Remark 1: Assumption (A1) is required for the well-
posedness part of Theorem 1 and assumption (A2) is needed
for the construction of the feedback law (4). ◦

Remark 2: The feedback operator F : L2(Ω)→ L2(Ω)
not only exists, we actually provide its precise expression,
which is the one given by (20). ◦

In Theorem 1 the feedback law (4) is composed by two
parts. The feedback operator is involved in the first part and
its role is to achieve the desired decay rate, while in the
second part, the sign multivalued operator allows to reject
the effects of the disturbance. Let us note that the resulting
closed-loop system, obtained by plugging the feedback law
(4) into (1), is a differential inclusion due to the presence of
the sign multivalued operator. We show its well-posedness
by applying the maximal monotone operator theory, which
may be consulted in [4], [3] or [28], for instance.

All the literature concerned with the stabilization of
disturbed models cited in this paper are of one-dimensional
nature. Up to our knowledge, this is the first paper
addressing the stabilization of a N-dimensional disturbed
model.

The rest of this paper is organized as follows. The proof
of Theorem 1 is carried out in Sections II and III. Being
precise, the feedback law (4) is designed in Section II and
the well-posedness of the resulting closed-loop system is
shown in Section III. Then, in Section IV we provide a
numerical simulation. Finally, in Section V we give some
concluding remarks.

Notation. The partial derivatives are taken in the sense
of distributions. The Sobolev space H1(Ω) is formed by
the y in L2(Ω) such that ∇y in L2(Ω)N . The Sobolev space
H1

0 (Ω) is the closure of C∞
0 (Ω) in H1(Ω). The theory of

Sobolev spaces may be consulted in [1], [10, Chapter 5] or
[5, Chapter 9], for instance. The space L1(0,∞;L2(Ω))
are the integrable y(t, ·) : (0,∞) → L2(Ω) such that
‖y‖L1(0,∞;L2(Ω)) =

∫
∞

0 ‖y(t, ·)‖L2(Ω) dt < ∞. The space
C([0,∞);L2(Ω)) are the continuous y(t, ·) : [0,∞)→ L2(Ω)
such that ‖y‖C([0,∞);L2(Ω)) =maxt∈[0,∞) ‖y(t, ·)‖L2(Ω) <∞. The
space W 1,1(0,∞;L2(Ω)) are the y in L1(0,∞;L2(Ω)) such that
yt in L1(0,∞;L2(Ω)). Further details of these three vector-
valued functional spaces may be found in [28, Chapter III] or
[10, Section 5.9.2], for instance.

II. FEEDBACK DESIGN

Let us assume that z = z(t,x) is a regular enough solution
of (1). The required regularity for the following formal
computations will be justified in Section III. From (1) we
get

1
2

d
dt

(∫
Ω

|z|2 dx
)
+
∫

Ω

(−a4z− cz)zdx

=
∫

Ω

(u+d)zdx.

(6)

With the purpose to appreciate the idea behind the
feedback design, in (6) we decompose the feedback law as
u = u1 + u2, where u1 will be constructed to achieve the
desired decay rate and u2 will be constructed to reject the
effects of the disturbance. Being precise:

• We are going to construct u1 such that

ω

∫
Ω

|z|2 dx≤
∫

Ω

(−a4z− cz−u1)zdx. (7)

• We are going to construct u2 such that

∫
Ω

(u2 +d)zdx≤ 0. (8)
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Let us note that if we are able to construct the feedback law
u = u1 + u2 so that (7) and (8) are satisfied, then we can
obtain (5) from (6). Indeed, combining (6)-(8) it follows

d
dt

(∫
Ω

|z|2 dx
)
+2ω

∫
Ω

|z|2 dx≤ 0,

from which the exponential stability in L2(Ω) of (1), with
decay rate ω ∈ (0,∞), is obtained.

A. Design of u1

We identify L2(Ω) with its dual space. We would like to
view (1) in its operator form. To that end, first let us recall
that Ω ⊂ RN is an open and bounded set of class C1, and
hence, by [1, Theorem 5.37] we have

H1
0 (Ω) = {φ ∈ H1(Ω) / φ = 0 on ∂Ω}. (9)

Then, let us introduce the operator
A : D(A )⊂ L2(Ω)→ L2(Ω),

D(A ) = {φ ∈ H1
0 (Ω) / 4φ ∈ L2(Ω)},

A φ = a4φ + cφ ,

(10)

which is linear in φ . Since H1(Ω) ⊂ L2(Ω) with compact
injection thanks to [5, Theorem 9.16], we can adapt the
arguments used in the proof of [5, Theorem 8.22] (see also
[5, Theorem 9.31] or [23, Appendix B]) to prove that A
is a self-adjoint operator with compact resolvent. Then, by
[5, Theorem 6.11] we can take a Hilbert basis {φm}m∈N ⊂
D(A ) of L2(Ω) composed by the eigenfunctions of A .
Furthermore, the corresponding sequence of eigenvalues
{λm}m∈N ⊂ R satisfies{

λm ≥ λm+1 >−∞ for each m ∈ N,
λm→−∞ as m→ ∞.

(11)

Let us note that we could take u1 as the right-hand side
of (2). However, we would be acting on all the eigenvalues,
which is not necessary. We proceed to construct u1 so that
it will only influence the non-negative and slow enough
eigenvalues. To that end, let n ∈ N be such that

0 < ω ≤−λm if m ∈ {n,n+1, . . .}. (12)

By (11) we infer that we can always find such a n in N. Let
us consider

z(t,x) =
∞

∑
m=1

zm(t)φm(x). (13)

Let us choose the gains Gm(t), with m in {1, . . . ,n−1}, of
the feedback law

u1(t,x) =
n−1

∑
m=1

Gm(t)φm(x), (14)

so that (7) is satisfied. Taking into account (10), (13), (14)
and the orthonormality of the eigenfunctions it follows

∫
Ω

(−a4z− cz−u1)zdx

=−
∫

Ω

(A z+u1)zdx

=−
n−1

∑
m=1

[λmzm(t)+Gm(t)]zm(t)−
∞

∑
m=n

λmzm(t)2.

(15)

In view of (12), we see in (15) that it suffices to choose the
gains Gm(t) so that λmzm(t)+Gm(t) =−ωzm(t). Therefore,
we obtain ∫

Ω

(−a4z− cz−u1)zdx

≥
n−1

∑
m=1

ωzm(t)−
∞

∑
m=n

λmzm(t)2 ≥ ω

∞

∑
m=1

zm(t)2,

from which we arrive at (7) with the feedback law

u1(t,x) =
n−1

∑
m=1

(−λm−ω)zm(t)φm(x). (16)

Remark 3: By (11) and (12) we either have λm ≥ 0 or
0 < −λm < ω when m ∈ {1, . . . ,n− 1}. Accordingly, from
(2) together with (16) we can appreciate the influence of c+

onto the finite number of non-negative eigenvalues. Actually,
if c+ = 0, then we would only have 0 < −λm < ω when
m ∈ {1, . . . ,n− 1}, which corresponds to the slow enough
eigenvalues. ◦

B. Design of u2

We proceed to construct u2 so that (8) is satisfied. To that
end, we are going to employ (3) with H = L2(Ω) and the
property∫

Ω

θ f dx = ‖ f‖L2(Ω), ∀ f ∈ L2(Ω), ∀θ ∈ signL2(Ω)( f ). (17)

Let us recall that the disturbance is unknown, and hence,
we cannot choose u2(t,x) = −d(t,x). Thanks to Cauchy-
Schwarz inequality we have∫

Ω

(u2 +d)zdx

≤
∫

Ω

u2zdx+‖d(t, ·)‖L2(Ω)‖z(t, ·)‖L2(Ω).

(18)

Since ‖d(t, ·)‖L2(Ω) ≤ D by Assumption (A2), from (17)
together with (18) we see that it suffices to choose the
feedback law

u2(t,x) =−DsignL2(Ω)(z(t,x)) (19)

to arrive at (8).
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C. Feedback law

We proceed to get the feedback law (4). To that end, we
first need to construct the feedback operator. Given f in
L2(Ω) let us consider

f (x) =
∞

∑
m=1

fmφm(x).

With (16) in mind, let us define the feedback operator
F : L2(Ω)→ L2(Ω) by

F ( f ) =
n−1

∑
m=1

(−λm−ω) fmφm(x). (20)

Then, by (16), (20) and (13) we can write

u1(t,x) = F (z(t,x)). (21)

Finally, since u = u1 + u2, by (21) and (19) we get the
feedback law (4), whose explicit form is given by

u(t,x) =
n−1

∑
m=1

(−λm−ω)zm(t)φm(x)

−DsignL2(Ω)(z(t,x)).

(22)

III. WELL-POSEDNESS

Let us write the resulting closed-loop system. To that end,
let us introduce the multivalued operator

B : D(B)⊂ L2(Ω)→ 2L2(Ω),

D(B) = D(A ),

Bφ =−A φ −F (φ)+DsignL2(Ω)(φ).

(23)

Then, in virtue of (1), (10), the feedback law (4) and
(23) it follows that the resulting closed-loop system is the
differential inclusion{

z′(t)+Bz(t) 3 d(t), t > 0,

z(0) = z0.
(24)

In order to prove its well-posedness we are going to apply
the maximal monotone operator theory. In that direction,
we have the following result.

Proposition 1: B is a maximal monotone operator.

Proof. The operator −A −F is linear and self-adjoint.
Moreover, by (10), (21) and (7) it follows that −A −F
is a monotone operator. Therefore, by [7, Corollary 2.4.8]
we have that −A −F is a maximal monotone operator
(or equivalently A +F is a m-dissipative operator). In our
context the notion of maximal monotone operator coincides
with the one of m-accretive operator. Then, we conclude the
result thanks to [3, Chapter 4, Proposition 2.4] applied to
the case X = L2(Ω), where L2(Ω) is identified with its dual
space. There we have considered that the duality mapping
J : X → X∗, where X∗ is the dual space of X , is the identity
operator in X (see [3, Page 4]). �

To complete the proof of Theorem 1 we proceed to
show that (1) with the feedback law (4) has a unique weak
solution z ∈C([0,∞);L2(Ω)) and it satisfies (5).

For the moment let us assume that d ∈W 1,1(0,∞;L2(Ω))
and z0 ∈ D(B). Then, [28, Chapter IV, Theorem 4.1] gives
the existence of a unique z ∈W 1,1(0,∞;L2(Ω)) such that:

z(0) = z0,

z′(t)+Bz(t) 3 d(t) for almost every t > 0,

z(t) ∈ D(B) for every t ≥ 0.

Therefore, [28, Chapter III, Proposition 1.2] applies and all
the formal computations done in Section II make sense,
implying that (5) is satisfied.

Given (d, d̂) ∈W 1,1(0,∞;L2(Ω))2 and (z0, ẑ0) ∈ D(B)2,
let us take the corresponding unique solution (z, ẑ) ∈
W 1,1(0,∞;L2(Ω))2. Then, by [28, Chapter IV, (4.12)] we
have

‖z(t, ·)− ẑ(t, ·)‖L2(Ω) ≤ ‖z0− ẑ0‖L2(Ω)

+
∫ t

0
‖d(s, ·)− d̂(s, ·)‖L2(Ω)ds, t ≥ 0.

(25)

Taking into account the density of W 1,1(0,∞;L2(Ω)) in
L1(0,∞;L2(Ω)) and of D(B) in L2(Ω), we may use (25)
to define, as in [28, Page 183] for instance, the notion of
weak solution of (24). Therefore, in virtue of [28, Chapter
IV, Theorem 4.1A] we have that (24) has a unique weak
solution z∈C([0,∞);L2(Ω)) and it satisfies (5) provided that
d ∈ L1(0,∞;L2(Ω)) and z0 ∈ L2(Ω). This ends the proof of
Theorem 1. �

IV. NUMERICAL SIMULATIONS

To illustrate the obtained stability result, let us consider
the reaction-diffusion equation (1) with N = 1. As far
as the operator is concerned without neither control nor
disturbance, which is the one given by (10), its eigenvalues
when c ∈ R are λn = c− an2π2/L2 and the corresponding
eigenfunctions are φn(x)=

√
2/Lsin(nπx/L), n in N and x in

[0,L]. We consider the following data for the space domain
L = 2π , the diffusion coefficient a = 0.5, the reaction term
c = 0.5, the initial condition z0(x) = −x(2L/3− x)(L− x),
for all x in [0,L], and the maximal perturbation radius equal
to D = 1.25.

Note that, with these parameter values, the first eigenvalue
of the open-loop operator is positive. Moreover, we may
check that the scalar product between the initial condition
and the first eigenvector is non zero, and thus, without
disturbance and without any control the solution to (1)
diverges. This open-loop unstability is checked on numerical
simulations of Figure 1.
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Fig. 1. Time evolution of z(t,x) for the open-loop system without
disturbance

The set of coefficient and initial condition is the same as
in [19]. In this configuration, we have two unstable modes
λ1 = 0.375 and λ2 = 0. For the perturbation, we set d(x, t) =
Dsin(t)(2πx/L). We use a forward Euler method1 with 20
space points. The time-evolution of the closed-loop system
is depicted in Figure 2 with the control given in Figure 3,
where both parts of the feedback law could be seen, namely
u1 for small time instant, and u2 for larger time instant. As
expected from Theorem 1, the system state converges to zero.

V. CONCLUSION

In this paper an (unstable open-loop) reaction-diffusion
equation has been considered in presence of disturbance
and control inputs. A control strategy has been introduced
to solve the rapid stabilization problem. In closed-loop with
the designed controlled, the solutions to the distributed
parameter system are exponentially stabilized in L2(Ω), with
decay rate as large as desired. The obtained N-dimensional
reaction-diffusion equation (1) rejects the effects of an
unknown distributed disturbance satisfying the assumptions
(A1) and (A2). Such task for the feedback law (4) was
possible thanks to the sign multivalued operator (3) with
H = L2(Ω).

This work lets some other control problems open. It could
be interesting to consider other (linear or nonlinear) partial
differential equations. The obtained performance should also
be balanced with respect to the disturbance rejection. This
trade-off will be considered in a future work.
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