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In this paper we study the exact controllability property of a microbeam model by 
means of a single boundary control. We use the multiplier method together with 
the controllability–observability duality to obtain a time T ∗ > 0 such that the 
corresponding linear equation is exactly controllable provided that the control time 
is greater than T ∗ > 0. Our exact controllability result improves the one obtained 
in Vatankhah et al. (2014) [20], which uses six boundary controls instead of a single 
one.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A microbeam is a thin beam with cross-sectional area in the order of a few square microns and length 
in the order of approximately ten to hundreds of microns. The microbeams are a major structural compo-
nent of micro-electromechanical (MEMS) devices such as electrostatic actuators [3], micro-switches [9] and 
mechanical resonators [17] for instance.

In this paper we study the exact controllability property of a microbeam model by means of a single 
boundary control. Denoting by z = z(t, x) the later deflection of a microbeam, the model that we consider 
here has been obtained in [12, Section 4.1] and [21, Section 2] by using the modified strain gradient theory 
developed in [13] together with Hamilton’s Principle, namely:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρAztt + Szxxxx −Kzxxxxxx = 0, (t, x) ∈ (0, T ) × (0, L),
z(t, 0) = 0, z(t, L) = 0, t ∈ (0, T ),
zx(t, 0) = 0, zx(t, L) = 0, t ∈ (0, T ),
zxx(t, 0) = 0, zxx(t, L) = u(t), t ∈ (0, T ),
z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ (0, L).

(1)
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The parameters ρ > 0, A > 0 and L > 0 are, respectively, the density, cross-sectional area and the length 
of the microbeam. The physical characterization of the microbeam is contained in the parameters

S = EI + μA

(
2l20 + 43

225 l
2
1 + l22

)
, K = μA

(
2l20 + 4

5 l
2
1

)
,

where l0 > 0, l1 > 0 and l2 > 0 correspond to the independent material parameters associated with 
dilatation gradients, deviatoric stretch gradients and symmetric rotation gradients respectively. In fact, 
these parameters, introduced in [13, Section 2.4], characterize the size effects phenomenon of the beam 
when its structural size is in the order of microns. As usual, E > 0 is the Young modulus, I > 0 the area 
moment of inertia of the microbeam cross-section and μ > 0 the shear modulus.

Remark 1.1. When the structural size of the beam is no longer in the order of microns, we may consider 
l0 = l1 = l2 = 0, obtaining the Euler–Bernouilli beam equation.

Given the hyperbolic character of Eq. (1), the appropriate control notion to study is the exact control-
lability, which is defined as follows. Eq. (1) is said to be exactly controllable in time T > 0 if given any 
initial state (z0, z1) and any final state (z̃0, z̃1) there exists a control u such that its corresponding solution 
z = z(t, x) satisfies z(T, ·) = z̃0(·) and zt(T, ·) = z̃1(·).

We use the multiplier method together with the controllability–observability duality (e.g. [6, Theo-
rem 2.44] and [19, Theorem 11.2.1]) to obtain a time T ∗ > 0 such that Eq. (1) is exactly controllable 
in time T > T ∗. This is our main result.

Theorem 1.1. Let us assume that

T > T ∗ := 2Lmax
{

1, L
2

π2
ρA

S

}
.

Then, for every (z0, z1) ∈ L2(0, L) ×H−3(0, L) and every (z̃0, z̃1) ∈ L2(0, L) ×H−3(0, L) there exists u ∈
L2(0, T ) such that the unique solution z ∈ C([0, T ]; L2(0, L)) ∩C1([0, T ]; H−3(0, L)) defined by transposition 
of Eq. (1) satisfies z(T, ·) = z̃0(·) in L2(0, L) and zt(T, ·) = z̃1(·) in H−3(0, L).

This result improves [20, Theorem 3], where it is addressed the same control problem but with six 
boundary controls. Nevertheless, we conjecture that our result might be improved, by following the strategies 
in [7], in the sense that Theorem 1.1 would actually hold for T ∗ = 0. We will present this with further details 
as an open problem in Section 4.

This paper is organized as follows. In Section 2 we present the well-posedness results needed for studying 
control system (1). In Section 3 we prove the exact controllability property for control system (1) given by 
Theorem 1.1. Finally, in Section 4 we suggest the above-mentioned open problem.

2. Well-posedness

The purpose of this section is to present the well-posedness results needed for studying control system (1). 
In virtue of the control framework that we shall adopt in Section 3, it is necessary to have solutions for 
Eq. (1) with data u ∈ L2(0, T ) and (z0, z1) ∈ L2(0, L) ×H−3(0, L). Therefore, the suitable notion of solutions 
for this equation, given the previous set of data, are the solutions defined by transposition. We shall proceed 
this study as in [10, Chapter 2] for instance, and hence, we first must know about the solutions of this 
equation when the data is regular enough.
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2.1. Finite energy solutions

Let us consider the equation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρAztt + Szxxxx −Kzxxxxxx = f, (t, x) ∈ (0, T ) × (0, L),
z(t, 0) = 0, z(t, L) = 0, t ∈ (0, T ),
zx(t, 0) = 0, zx(t, L) = 0, t ∈ (0, T ),
zxx(t, 0) = 0, zxx(t, L) = u(t), t ∈ (0, T ),
z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ (0, L).

(2)

For a regular enough solution of Eq. (2) we define its energy as

E(t) := 1
2

L∫
0

(∣∣zt(t, x)
∣∣2 + S

ρA

∣∣zxx(t, x)
∣∣2 + K

ρA

∣∣zxxx(t, x)
∣∣2) dx, t ∈ [0, T ]. (3)

We first study Eq. (2) with homogeneous boundary conditions. By using the variational approach for 
evolution equations, which has been developed in [15, Chapter 3, Section 8] for instance, we have obtained 
the following result.

Proposition 2.1. Let f ∈ L2(0, T ; L2(0, L)) and (z0, z1) ∈ H3
0 (0, L) × L2(0, L). Then, Eq. (2) with 

u = 0 has a unique solution z ∈ C([0, T ]; H3
0 (0, L)) ∩ C1([0, T ]; L2(0, L)). Moreover, there exists C =

C(T, L, ρ, A, S, K) > 0 such that

‖z‖C([0,T ];H3
0 (0,L))∩C1([0,T ];L2(0,L)) ≤ C

(
‖f‖L2(0,T ;L2(0,L)) +

∥∥(z0, z1)
∥∥
H3

0 (0,L)×L2(0,L)

)
. (4)

Proof. Let us consider the bilinear form a : H3
0 (0, L) ×H3

0 (0, L) → R defined by

a(u, v) := S

ρA

L∫
0

u′′(x)v′′(x) dx + K

ρA

L∫
0

u′′′(x)v′′′(x) dx,

which turns out to be continuous thanks to the Cauchy–Schwarz inequality. Furthermore, the Poincaré 
inequality tells us that there exists C = C(L, ρ, A, S, K) > 0 such that

a(v, v) = S

ρA

L∫
0

∣∣v′′(x)
∣∣2dx + K

ρA

L∫
0

∣∣v′′′(x)
∣∣2dx ≥ C‖v‖2

H3
0 (0,L).

Accordingly, [15, Theorem 8.2, Chapter 3] leads us to the existence of a unique solution z ∈ C([0, T ];
H3

0 (0, L)) ∩ C1([0, T ]; L2(0, L)) to Eq. (2) when u = 0.
Now we proceed to obtain (4). Some integrations by parts on (0, L) allow us to prove that for every 

t ∈ [0, T ] the solution z = z(t, x) of Eq. (2) with u = 0 satisfies

dE(t)
dt

=
L∫

0

(
zt(t, x)ztt(t, x) + S

ρA
zxx(t, x)zxxt(t, x) + K

ρA
zxxx(t, x)zxxxt(t, x)

)
dx,

=
L∫ (

ztt(t, x) + S

ρA
zxxxx(t, x) − K

ρA
zxxxxxx(t, x)

)
zt(t, x) dx,
0
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≤ 1
2ρA

∥∥f(t, ·)
∥∥2
L2(0,L) + 1

2ρA
E(t).

Here we apply the Grönwall lemma together with the Poincaré inequality to get (4). The proof of Proposi-
tion 2.1 is complete. �
Remark 2.1. Let f = 0, u = 0 and (z0, z1) ∈ H3

0 (0, L) ×L2(0, L). It is straightforward to see from the proof 
of the previous proposition that the conservation of energy holds. That is to say, for every t ∈ [0, T ] it holds

E(t) = E(0) := 1
2

L∫
0

(∣∣z1(x)
∣∣2 + S

ρA

∣∣z′′0 (x)
∣∣2 + K

ρA

∣∣z′′′0 (x)
∣∣2) dx. (5)

Moreover, thanks to this conservation of energy and the Poincaré inequality, there exists C > 0 such that 
for every t ∈ [0, T ] it holds

∥∥(z0, z1)
∥∥
H3

0 (0,L)×L2(0,L) ≤ C
∥∥(z(t, ·), zt(t, ·))∥∥H3

0 (0,L)×L2(0,L). (6)

In order to obtain more precise information about the solutions of Eq. (1) with regular data, we derive 
the following key identity, that later we will also use in studying the control properties of control system (1).

Lemma 2.1. Let (z0, z1) ∈ H3
0 (0, L) × L2(0, L). Then, the unique solution z ∈ C([0, T ]; H3

0 (0, L)) ∩
C1([0, T ]; L2(0, L)) of Eq. (2) with f = 0 and u = 0 satisfies the identity

L

2
K

ρA

T∫
0

∣∣zxxx(t, L)
∣∣2dt−

L∫
0

xzx(t, x)zt(t, x)
∣∣∣∣
T

0
dx

= 1
2

T∫
0

L∫
0

(∣∣zt(t, x)
∣∣2 + 3S

ρA

∣∣zxx(t, x)
∣∣2 + 5K

ρA

∣∣zxxx(t, x)
∣∣2)dxdt. (7)

Proof. The unique solution z ∈ C([0, T ]; H3
0 (0, L)) ∩ C1([0, T ]; L2(0, L)) for Eq. (2) is given by Proposi-

tion 2.1. The proof of this lemma is done by using the multiplier method. Multiplying Eq. (2) with f = 0
and u = 0 by xzx(t, x) we get

T∫
0

L∫
0

(
ztt(t, x) + S

ρA
zxxxx(t, x) − K

ρA
zxxxxxx(t, x)

)
xzx(t, x) dxdt = 0. (8)

Some integrations by parts on (0, T ) or (0, L) give us the following expressions.

•
∫ T

0
∫ L

0 ztt(t, x)xzx(t, x) dxdt = 1
2
∫ T

0
∫ L

0 |zt(t, x)|2dxdt +
∫ L

0 xzt(t, x)zx(t, x)|T0 dx.
•

∫ T

0
∫ L

0
S
ρAzxxxx(t, x)xzx(t, x) dxdt = 1

2
∫ T

0
∫ L

0
3S
ρA |zxx(t, x)|2dxdt.

• − 
∫ T

0
∫ L

0
K
ρAzxxxxxx(t, x)xzx(t, x) dxdt = 1

2
∫ T

0
∫ L

0
5K
ρA |zxxx(t, x)|2dxdt − L

2
K
ρA

∫ T

0 |zxxx(t, L)|2dt.

Therefore, from the combination of the three previous expressions with (8) we arrive at identity (7). The 
proof of Lemma 2.1 is complete. �

The above-mentioned precise information about the solutions of Eq. (1) with regular data is the following 
one.
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Lemma 2.2. Let (z0, z1) ∈ H3
0 (0, L) × L2(0, L). Then, the unique solution z ∈ C([0, T ]; H3

0 (0, L)) ∩
C1([0, T ]; L2(0, L)) of Eq. (2) with f = 0 and u = 0 satisfies zxxx(·, L) ∈ L2(0, T ). Moreover, there ex-
ists C = C(T, L, ρ, A, S, K) > 0 such that

T∫
0

∣∣zxxx(t, L)
∣∣2dt ≤ C

∥∥(z0, z1)
∥∥2
H3

0 (0,L)×L2(0,L). (9)

Proof. The proof of this lemma is based on identity (7). In fact, from that identity, the Cauchy–Schwarz 
inequality and the Poincaré inequality it follows that

L

2
K

ρA

T∫
0

∣∣zxxx(t, L)
∣∣2dt ≤

L∫
0

xzx(t, x)zt(t, x)
∣∣∣∣
T

0
dx + 5

T∫
0

E(t) dt,

≤ L

∥∥∥∥∥
L∫

0

(∣∣zt(t, x)
∣∣2 +

∣∣zx(t, x)
∣∣2) dx

∥∥∥∥∥
L∞(0,T )

+ 5
T∫

0

E(t) dt,

≤ C
∥∥E(t)

∥∥
L∞(0,T ) + 5

T∫
0

E(t) dt.

Recall that E(t) was defined in (3). Therefore, the above inequality together with conservation of energy (5)
gives us the desired result. The proof of Lemma 2.2 is complete. �
Remark 2.2. The regularity for zxxx(·, L) obtained in the previous lemma cannot be deduced from trace 
theorems (e.g. [15, Chapter 1]). For this reason, this extra regularity is known as hidden regularity. This 
kind of result is usual when dealing with hyperbolic equations (e.g. [10] and [14]), or equations with similar 
properties such as the Kawahara (e.g. [2] and [8]), Korteweg–de Vries (e.g. [5] and [18]) and the Schrödinger 
(e.g. [1] and [16]) equations.

We can use a suitable lifting function together with Proposition 2.1 to study Eq. (2) with non-
homogeneous boundary conditions. To this end, let us introduce the space

H3
l (0, L) :=

{
y ∈ H3(0, L) ∩H2

0 (0, L)/y′′(0) = 0
}
, (10)

which is well-defined thanks to the continuous injection H3(0, L) ↪→ C2([0, L]).

Proposition 2.2. Let f ∈ L2(0, T ; L2(0, L)), u ∈ {u ∈ C2([0, T ])/u(0) = u′(0) = 0} and (z0, z1) ∈ H3
0 (0, L) ×

L2(0, L). Then, Eq. (2) has a unique solution z ∈ C([0, T ]; H3
l (0, L)) ∩C1([0, T ]; L2(0, L)). Moreover, there 

exists C = C(T, L, ρ, A, S, K) > 0 such that

‖z‖C([0,T ];H3
l (0,L))∩C1([0,T ];L2(0,L)) ≤ C

(
‖f‖L2(0,T ;L2(0,L)) + ‖u‖C2([0,T ]) +

∥∥(z0, z1)
∥∥
H3

0 (0,L)×L2(0,L)

)
. (11)

Proof. We define the lifting function

ψ(t, x) := x3(L− x)2
u(t).
2L3
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By taking into account that g := f − ρAψtt − Sψxxxx + Kψxxxxxx, y0(x) := z0(x) − ψ(0, x) = z0(x) and 
y1(x) := z1(x) − ψt(0, x) = z1(x) are elements of L2(0, T ; L2(0, L)), H3

0 (0, L) and L2(0, L) respectively, it 
follows that the equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρAytt + Syxxxx −Kyxxxxxx = g, (t, x) ∈ (0, T ) × (0, L),
y(t, 0) = 0, y(t, L) = 0, t ∈ (0, T ),
yx(t, 0) = 0, yx(t, L) = 0, t ∈ (0, T ),
yxx(t, 0) = 0, yxx(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, L),

has a unique solution y ∈ C([0, T ]; H3
0 (0, L)) ∩C1([0, T ]; L2(0, L)) in virtue of Proposition 2.1. Furthermore, 

in view of (4) this solution satisfies

‖y‖C([0,T ];H3
0 (0,L))∩C1([0,T ];L2(0,L)) ≤ C

(
‖g‖L2(0,T ;L2(0,L)) +

∥∥(y0, y1)
∥∥
H3

0 (0,L)×L2(0,L)

)
. (12)

From ψ(t, 0) = ψ(t, L) = ψx(t, 0) = ψx(t, L) = ψxx(t, 0) = 0 and ψxx(t, L) = u(t), we get that z :=
y + ψ ∈ C([0, T ]; H3

l (0, L)) ∩ C1([0, T ]; L2(0, L)) is a solution of Eq. (2). The inequality

‖ψ‖C([0,T ];H3
l (0,L))∩C1([0,T ];L2(0,L)) ≤ C‖u‖C2([0,T ]),

combined with ‖z‖ −‖ψ‖ ≤ ‖y‖ (valid for any norm) and (12) gives us (11). This inequality and the linearity 
of the equation yield the uniqueness of solutions. The proof of Proposition 2.2 is complete. �
2.2. Solutions defined by transposition

We proceed to define what we will understand as a solution defined by transposition for Eq. (1) given 
the data u ∈ L2(0, T ) and (z0, z1) ∈ L2(0, L) ×H−3(0, L). We proceed as in [10, Chapter 2] for instance. In 
order to motivate such a definition, we consider the following formal computations. For (q0, q1) ∈ H3

0 (0, L) ×
L2(0, L), let q ∈ C([0, T ]; H3

0 (0, L)) ∩ C1([0, T ]; L2(0, L)) be the unique solution of the equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρAqtt + Sqxxxx −Kqxxxxxx = 0, (t, x) ∈ (0, T ) × (0, L),
q(t, 0) = 0, q(t, L) = 0, t ∈ (0, T ),
qx(t, 0) = 0, qx(t, L) = 0, t ∈ (0, T ),
qxx(t, 0) = 0, qxx(t, L) = 0, t ∈ (0, T ),
q(0, x) = q0(x), qt(0, x) = q1(x), x ∈ (0, L),

(13)

given by Proposition 2.1. Let τ ∈ [0, T ]. Multiplying Eq. (1) by q = q(t, x) and then performing some 
integrations by parts on (0, τ) or (0, L) we get

τ∫
0

L∫
0

(
qtt(t, x) + S

ρA
qxxxx(t, x) − K

ρA
qxxxxxx(t, x)

)
z(t, x) dxdt

−
L∫

0

z(t, x)qt(t, x)
∣∣∣∣
τ

0
dx +

L∫
0

zt(t, x)q(t, x)
∣∣∣∣
τ

0
dx +

τ∫
0

K

ρA
u(t)qxxx(t, L) dt = 0,

which leads us to

L∫
z(τ, x)qt(τ, x) dx−

L∫
zt(τ, x)q(τ, x) dx
0 0
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=
τ∫

0

K

ρA
u(t)qxxx(t, L) dt +

L∫
0

z0(x)q1(x) dx−
L∫

0

z1(x)q0(x) dx.

In order to give a sense to the previous formal computations, and keeping in mind the regularity of 
q = q(t, x) together with its hidden regularity given by Lemma 2.2, we present the following definition.

Definition 2.1. Let (z0, z1) ∈ L2(0, L) ×H−3(0, L) and u ∈ L2(0, L). We say that z = z(t, x) is a solution 
defined by transposition of Eq. (1) if z ∈ C([0, T ]; L2(0, T )) ∩ C1([0, T ]; H−3(0, L)) is such that for every 
τ ∈ [0, T ] and every (q0, q1) ∈ H3

0 (0, L) × L2(0, L) it satisfies
〈(
−zt(τ, ·), z(τ, ·)

)
,
(
q(τ, ·), qt(τ, ·)

)〉
H−3(0,L)×L2(0,L),H3

0 (0,L)×L2(0,L)

=
τ∫

0

K

ρA
u(t)qxxx(t, L) dt +

L∫
0

z0(x)q1(x) dx− 〈z1, q0〉H−3(0,L),H3
0 (0,L), (14)

with q = q(t, x) being the unique solution of Eq. (13).

The next result establishes the existence and uniqueness of solutions defined by transposition for Eq. (1).

Proposition 2.3. Let u ∈ L2(0, T ) and (z0, z1) ∈ L2(0, L) × H−3(0, L). Then, Eq. (1) has a unique 
solution z ∈ C([0, T ]; L2(0, L)) ∩ C1([0, T ]; H−3(0, L)) defined by transposition. Moreover, there exists 
C = C(T, L, ρ, A, S, K) > 0 such that

‖z‖C([0,T ];L2(0,L))∩C1([0,T ];H−3(0,L)) ≤ C
(
‖u‖L2(0,T ) +

∥∥(z0, z1)
∥∥
L2(0,L)×H−3(0,L)

)
. (15)

Proof. Let us assume that u ∈ {u ∈ C2([0, T ]) / u(0) = u′(0) = 0} and (z0, z1) ∈ H3
0 (0, L) × L2(0, L), so 

that Eq. (1) has a unique solution z ∈ C([0, T ]; H3
l (0, L)) ∩C1([0, T ]; L2(0, L)) due to Proposition 2.2. Recall 

that H3
l (0, L) was defined in (10) and note that in particular z ∈ C([0, T ]; L2(0, L)) ∩C1([0, T ]; H−3(0, L)).

For (q0, q1) ∈ H3
0 (0, L) ×L2(0, L), let q ∈ C([0, T ]; H3

0 (0, L)) ∩C1([0, T ]; L2(0, L)) be the unique solution 
of Eq. (13) given by Proposition 2.1. By taking into account that the linear map (q(τ, ·), qt(τ, ·)) ∈ H3

0 (0, L) ×
L2(0, L) 
→ (q0, q1) ∈ H3

0 (0, L) × L2(0, L) is bijective thanks to Proposition 2.1, for τ ∈ [0, T ] we define the 
linear form Lτ : H3

0 (0, L) × L2(0, L) → R given by

Lτ

(
q(τ, ·), qt(τ, ·)

)
:=

τ∫
0

K

ρA
u(t)qxxx(t, L) dt +

L∫
0

z0(x)q1(x) dx− 〈z1, q0〉H−3(0,L),H3
0 (0,L),

which actually corresponds to the right-hand side of (14). This linear form is continuous in virtue of the 
hidden regularity stated in Lemma 2.2 and (6). In fact, from them and the Cauchy–Schwarz inequality we 
get

∣∣Lτ

(
q(τ, ·), qt(τ, ·)

)∣∣ ≤ K

ρA
‖u‖L2(0,τ)

∥∥qxxx(·, L)
∥∥
L2(0,τ) + ‖z0‖L2(0,L)‖q1‖L2(0,L) + ‖z1‖H−3(0,L)‖q0‖H3

0 (0,L),

≤ C
(
‖u‖L2(0,T ) +

∥∥(z0, z1)
∥∥
L2(0,L)×H−3(0,L)

)∥∥(q0, q1)
∥∥
H3

0 (0,L)×L2(0,L),

≤ C
(
‖u‖L2(0,T ) +

∥∥(z0, z1)
∥∥
L2(0,L)×H−3(0,L)

)
‖
(
q(τ, ·), qt(τ, ·)

)
‖H3

0 (0,L)×L2(0,L). (16)

Therefore, for every τ ∈ [0, T ] the Riesz Representation Theorem gives us the existence of a unique 
(−zt(τ, ·), z(τ, ·)) ∈ H−3(0, L) × L2(0, L) such that (14) is satisfied. Moreover, since∥∥(zt(τ, ·), z(τ, ·))∥∥ −3 2 = ‖Lτ‖H−3(0,L)×L2(0,L),
H (0,L)×L (0,L)
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it follows from (16) that
∥∥(z(τ, ·), zt(τ, ·))∥∥L2(0,L)×H−3(0,L) ≤ C

(
‖u‖L2(0,T ) +

∥∥(z0, z1)
∥∥
L2(0,L)×H−3(0,L)

)
.

The previous inequality leads us to (15). By considering that the continuous injection H3
0 (0, L) ↪→ L2(0, L)

is dense, and hence, if we identify L2(0, L) with itself, then we obtain the same injection properties for 
L2(0, L) ↪→ H−3(0, L), we can use (15) and a density argument to conclude that Eq. (1) has a unique 
solution z ∈ C([0, T ]; L2(0, L)) ∩ C1([0, T ]; H−3(0, L)) defined by transposition provided that u ∈ L2(0, T )
and (z0, z1) ∈ L2(0, L) ×H−3(0, L). The proof of Proposition 2.3 is complete. �
3. Boundary control

The purpose of this section is to prove Theorem 1.1, which is our main result. We begin by deriving an 
observability inequality for Eq. (13).

Proposition 3.1. Let (q0, q1) ∈ H3
0 (0, L) × L2(0, L). Then, the unique solution q ∈ C([0, T ]; H3

0 (0, L)) ∩
C1([0, T ]; L2(0, L)) of Eq. (13) satisfies

(
T − 2Lmax

{
1, L

2

π2
ρA

S

})
E(0) ≤ L

2
K

ρA

T∫
0

∣∣qxxx(t, L)
∣∣2dt. (17)

Proof. The unique solution q ∈ C([0, T ]; H3
0 (0, L)) ∩ C1([0, T ]; L2(0, L)) for Eq. (13) is given by Proposi-

tion 2.1. The proof of this proposition is based on identity (7). In fact, from that identity, conservation of 
energy (5) and the Cauchy–Schwarz inequality it follows that

TE(0) ≤
L∫

0

xqx(t, x)qt(t, x)
∣∣∣∣
T

0
dx + L

2
K

ρA

T∫
0

∣∣qxxx(t, L)
∣∣2dt,

≤ L

∥∥∥∥∥
L∫

0

(∣∣qt(t, x)
∣∣2 +

∣∣qx(t, x)
∣∣2) dx

∥∥∥∥∥
L∞(0,T )

+ L

2
K

ρA

T∫
0

∣∣qxxx(t, L)
∣∣2dt. (18)

Recall that E(t) was defined in (3). Since qx(t, ·) ∈ H2
0 (0, L) for every t ∈ [0, T ], the Poincaré inequality 

tells us that

L∫
0

∣∣qx(t, x)
∣∣2dx ≤ L2

π2

L∫
0

∣∣qxx(t, x)
∣∣2dx.

Accordingly, for every t ∈ [0, T ] the above inequality allows us to obtain

L∫
0

(∣∣qt(t, x)
∣∣2 +

∣∣qx(t, x)
∣∣2) dx ≤

L∫
0

(∣∣qt(t, x)
∣∣2 + L2

π2
ρA

S

S

ρA

∣∣qxx(t, x)
∣∣2 + K

ρA

∣∣qxxx(t, x)
∣∣2) dx,

≤ 2 max
{

1, L
2

π2
ρA

S

}
E(t),

which combined with (18) and conservation of energy (5) give us the desired result. The proof of Proposi-
tion 2.2 is complete. �
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In order to apply the controllability–observability duality (e.g. [6, Theorem 2.44] and [19, Theorem 11.2.1]) 
to prove Theorem 1.1, we need an observability inequality for the equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρAqtt + Sqxxxx −Kqxxxxxx = 0, (t, x) ∈ (0, T ) × (0, L),
q(t, 0) = 0, q(t, L) = 0, t ∈ (0, T ),
qx(t, 0) = 0, qx(t, L) = 0, t ∈ (0, T ),
qxx(t, 0) = 0, qxx(t, L) = 0, t ∈ (0, T ),
q(T, x) = q0(x), qt(T, x) = q1(x), x ∈ (0, L).

(19)

Note that we can transform this equation into Eq. (13) thank to the change of variable t 
→ T − t. Therefore, 
Proposition 2.1, Lemma 2.2 and Proposition 3.1 lead us to the following result.

Proposition 3.2. Let (q0, q1) ∈ H3
0 (0, L) × L2(0, L). Then, Eq. (19) has a unique solution q ∈ C([0, T ];

H3
0 (0, L)) ∩ C1([0, T ]; L2(0, L)) which satisfies qxxx(·, L) ∈ L2(0, T ). Moreover, if we assume that

T > T ∗ := 2Lmax
{

1, L
2

π2
ρA

S

}
,

then there exists C = C(T, L, ρ, A, S, K) > 0 such that

∥∥(q0, q1)
∥∥
H3

0 (0,L)×L2(0,L) ≤ C
∥∥qxxx(·, L)

∥∥
L2(0,T ). (20)

We finish this section with the proof of our main result, which is the exact controllability property for 
control system (1).

Proof of Theorem 1.1. For (z0, z1) ∈ L2(0, L) × H−3(0, L) and u ∈ L2(0, T ), we know that Eq. (1) has a 
unique solution z ∈ C([0, T ]; L2(0, L)) ∩C1([0, T ]; H−3(0, L)) defined by transposition due to Proposition 2.3. 
Therefore, by taking into account that (z(T, ·), zt(T, ·)) ∈ L2(0, L) × H−3(0, L), we introduce the set of 
reachable states from (z0, z1) ∈ L2(0, L) ×H−3(0, L) as

R(z0, z1) :=
{(

z(T, ·), zt(T, ·)
)
∈ L2(0, L) ×H−3(0, L) / u ∈ L2(0, T )

}
.

From the linearity of Eq. (1) we get

R(z0, z1) =
(
z̃(T, ·), z̃t(T, ·)

)
+ R(0, 0),

where z̃ = z̃(t, x) is the unique solution defined by transposition of Eq. (1) when u = 0. Accordingly, the 
exact controllability property would be fulfilled if and only if R(0, 0) = L2(0, L) × H−3(0, L). This tells 
us that it is enough to study this property for the case z0 = z1 = 0. Henceforth, we may assume that 
z0 = z1 = 0.

Let us introduce the linear operator

Λ : u ∈ L2(0, T ) 
→
(
−zt(T, ·), z(T, ·)

)
∈ H−3(0, L) × L2(0, L).

We see that the exact controllability property is equivalent to the surjectivity of operator Λ. In virtue of 
[4, Theorem 2.20], we have that operator Λ is surjective if and only if there exists C > 0 such that it holds

∥∥(q0, q1)
∥∥

3 2 ≤ C
∥∥Λ∗(q0, q1)

∥∥
2 , ∀(q0, q1) ∈ H3

0 (0, L) × L2(0, L). (21)

H0 (0,L)×L (0,L) L (0,T )
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Let us determine adjoint operator Λ∗. For (q0, q1) ∈ H3
0 (0, L) × L2(0, L), let q = q(t, x) be the unique 

solution of Eq. (19) given by Proposition 3.2. Multiplying Eq. (1) by q = q(t, x) and then performing some 
integration by parts on (0, T ) or (0, L) we get

〈(
−zt(T, ·), z(T, ·)

)
, (q0, q1)

〉
H−3(0,L)×L2(0,L),H3

0 (0,L)×L2(0,L) =
T∫

0

K

ρA
u(t)qxxx(t, L) dt,

from where we obtain

Λ∗ : (q0, q1) ∈ H3
0 (0, L) × L2(0, L) 
→ K

ρA
qxxx(t, L) ∈ L2(0, T ).

Note that adjoint operator Λ∗ is well-defined thanks to Proposition 3.2. Furthermore, (20) of that proposition 
gives us (21), allowing us to conclude the surjectivity of operator Λ and the desired result. The proof of 
Theorem 1.1 is complete. �
4. Open problem

The open problem that we suggest here is inspired by the strategies followed in [7]. Let us consider the 
linear operator P : H6 ∩H3

0 (0, L) ⊂ L2(0, L) → L2(0, L) defined by

Pφ := S

ρA

d4φ

dx4 − K

ρA

d6φ

dx6 ,

which actually corresponds to the underlying spatial operator in Eq. (1). This positive operator, that is to 
say that (Pφ, φ)L2(0,L) ≥ 0 for every φ ∈ H6 ∩H3

0 (0, L) holds, is self-adjoint and its resolvent is compact. 
Therefore, its spectrum is a discrete set consisting only of positive eigenvalues, denoted by {σk}k∈N, satisfying 
limk→+∞ σk = +∞. Its corresponding eigenfunctions, denoted by {φk}k∈N, are elements of H6 ∩H3

0 (0, L)
and form an orthonormal basis of L2(0, L).

The open problem that we suggest consists of two questions.

Open Problem.

1. Do the eigenvalues of operator P satisfy limk→+∞(√σk+1 −
√
σk) = +∞?

2. Do the eigenfunctions of operator P satisfy φ′′′
k (L) �= 0 for every k ∈ N?

If the previous questions are positively answered, then we could use the Ingham inequality (e.g. 
[7, Lemma 5] and [11, Theorem 4.6]) to conclude that observability inequality (20) is valid for every T > 0
and not only for T > T ∗. This would tell us that Theorem 1.1 would actually hold for T ∗ = 0.
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